Station 1

1. Divide $\left(9 x^{3}-48 x^{2}+13 x+3\right)$ by $(x-5)$ using long division.
2. Use long division and the given factor ($x-4$) to completely factor $\left(x^{3}-37 x+84\right)$. State all the zeros of the polynomial function.

Station 2

Solve each equation below:

1. $2 x^{3}+2=0$
2. $x^{3}+125=0$
3. $x^{4}-12 x^{2}-64=0$
4. $x^{4}-3 x^{2}-28=0$

Station 3

1. The width of a box is 2 m less than the length. The height is $\mathbf{1} \mathrm{m}$ less than the length. The volume of the box is $60 \mathrm{~m}^{3}$. Find the length of the box.
2. The product of three consecutive integers, $n-1, n$ and $n+1$, is 210 . Write and solve an equation to find each number.

Station 4

1. Find the zeros and rewrite the polynomial function in factored form:

$$
y=x^{3}-2 x^{2}-5 x+6
$$

2. Find the roots of each equation:
a. $x^{3}-2 x^{2}-5 x+10=0$
b. $45 x^{3}+93 x^{2}-12=0$
c. $9 x^{4}+3 x^{3}-30 x^{2}+6 x+12=0$

Station 5

1. Find a third-degree polynomial equation with integer coefficients that has roots 8 and 3 i .
2. Find a fourth-degree polynomial equation with integer coefficients that has roots, $3+i$ and $-2 i$.

Extra

1. What is the largest number of real roots that a $7^{\text {th }}$ degree polynomial could have? What is the smallest number?
2. Write an expression that represents the width of a rectangle with length $x+5$ and an area of $x^{3}+12 x^{2}+47 x+60$.
3. One root of the equation $x^{3}+x^{2}-2=0$ is $x=1$. How many roots are there? What are all the roots for this polynomial equation?
4. Determine whether the binomial $(x-4)$ is a factor of the polynomial $P(x)=5 x^{3}-20 x^{2}-5 x+20$.
